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High Birefringence Liquid Crystals for Laser Hardening and IR Countermeasure

1. Objectives:
The main objective of this program is to develop high birefringence liquid crystal (LC) materials and fast-response

devices for laser hardening and infrared countermeasure.

2, Status of Effort:
We have developed a new polymer network liquid crystal for achieving fast-response time for laser hardening and

countermeasure,

3. Accomplishments

3.1 Motivation

For laser beam steering using optical phased arrays, a fast-response liquid crystal is needed. We have developed a
polymer network liquid crystal (PNLC) which exhibits a fast response time at room temperature. As compared to the
conventional approach, our PNLC response time is improved by ~250X. The tradeoff is the requirement of a higher
operating voltage.

3.2 Polymer Network Liquid Crystal (PNLC)

Liquid crystal/polymer composites could appear in network or droplet form depending on what polymer and
concentration is employed. Liquid crystal droplets could be found when the polymer concentration is higher than 30
wt%. In the lower concentration regime (<15 wt%), the polymer exists as chain-like networks. The polymer field
improves the response time; however, the associated light scattering is quite strong in the visible region. Such
devices exhibit an anisotropic light scattering behavior and have potential for reflective display and telecom
applications. Recently, a stressed LC cell comprising of 14 wt% Nolan-65 polymer was demonstrated to exhibit a
fast response time. In this approach, no surface alignment is required. However, a delicate shearing process is needed
in order to suppress light scattering. The operating voltage for a 20 pum E7 cell is ~135 V...

We have developed a fast-response homogeneously-aligned polymer network liquid crystal (PNLC) cell
comprising of ~10% polymers. A unique feature of this PNLC is that light scattering at A=1.55 um is suppressed
completely. The measured response time is less than 2 ms for a 27 phase change at A=1.55 pm and T~21 °C. The
tradeoff of the PNLC cell is its high operating voltage. To reduce operating voltage, high birefringence and large
dielectric anisotropy LC can be considered.

3.2.1 Experimental

To fabricate the PNLC cells, we first mixed a few percent of photocurable monomer to a nematic LC host. The
LC/monomer composite was sandwitched between two glass substrates. The inner surfaces of the indium-tin-oxide
(ITO) glass substrates were over-coated with a thin polyimide layer and buffed in anti-parallel directions for
achieving homogeneous alignment. The filled cell was then exposed to UV light for curing the polymer networks. To
eliminate light scattering, we need to control the domain sizes to be smaller than the wavelength. A weak UV
intensity would result in coarser polymer networks which, in turn, lead to larger domain sizes. Thus, we exposed the

networks align, on the average, parallel to the substrate surfaces due to the strong surface anchoring energy. Thus,
the PNLC cell is highly transparent in the voltage-off state. In a voltage-on state, the polymer networks exert a torque
to resist the LC molecules from being reoriented by the electric field. As a result, the threshold voltage is increased
significantly. Once the electric field is removed, the strong polymer field assists LC to relax back quickly.

For laser beam steering at A=1.55 um, both reflective and transmissive phase modulators can be used. To

generate diffractive phase gratings, a 2 phase change between adjacent grating elements is required. The reflective
and transmissive PNLC cells have been prepared and investigated.
Figure 1 depicts the experimental setup for studying the electro-optic effects of the reflective and transmissive PNLC
cells. The incoming diode laser beam (A=1.55 pm) is reflected or transmitted by the polarizing beam splitter (PBS)
to the PNLC cell. The rubbing direction of the LC cell is oriented to be 45° to the polarization axis of the incident
beam. For the reflective mode, ideally the reflector should be imbedded in the inner side of the rear substrate in order
to eliminate multiple surface reflections. For feasibility studies, we placed a dielectric mirror behind the LC cell to
serve as a reflector. For the transmissive mode, the analyzer is crossed to the polarizer. The voltage-dependent
reflectance or transmittance of the cells is recorded by the LabVIEW system and data are analyzed by a computer.
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Figure 1. Experimental setup for measuring the electro-optic properties of the reflective and
transmissive LC and PNLC cells. The rubbing direction of the cell is at 45° to the polarization axis
of the incident light. The LC cell-1 and detector 1 are for reflective mode and LC cell-2 and

detector 2 are for transmissive mode. PBS = polarizing beam splitter. P = Polarizer, )\ = 1.55 pm.

Two types of diacrylate monomers: bisphenol-A-dimethacrylate (M1) and RM-82 (Merck) were used. They have a
rod-like structure. The melting point of these two monomers is 74.6 and 82.4 °C, respectively. Due to the high heat
fusion enthalpy, each monomer’s solubility is limited to 7-8 wt%. Figure 2 shows the voltage-dependant reflectance
of PNLC cells with different monomer concentrations. When monomer concentration is 7 wt%, the cured polymer
network domain size is still too large which results in ~10% light scattering loss at A=1.55 pm. In order to eliminate
light scattering, we need to reduce the domain size further by increasing the monomer concentration, Therefore, we
mixed M1 with RM-82 to lower the melting point. For the LC mixture (Merck E44) we studied, the best monomer
concentration is 6 wt% M1 and 4 wt% RM-82, shown as the black solid line in Fig. 2. Unless otherwise mentioned
throughout this paper, our LC/polymer contains 90% LC, 6% M1 and 4% RM-82.
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Figure 2. Voltage-dependent reflectance of E44 (gray lines) and PNLC (dark lines) cells. From left
to right, c=5, 7, and 10 wt%. The cell gap for the reflective cells is 5 nm. A=1.55 um and 7=21 °C.

3.2.3 Results and Discussion

Figures 3 (a) and (b) plot the voltage-dependent reflectance and transmittance of the corresponding 7.7 um and 12.5
pm E44 PNLC cells. The total phase retardation of the reflective and transmissive PNLC cells is measured to be
8=3.847 and 3.0m, respectively. However, the last 1t phase change would require a very large voltage swing, For the




interest of keeping operating voltage low, we operated the LC modulator from 8= 2n (where V = V,,) to 0 (V=0).
Also included in Figs. 3 (a) and (b) (gray lines) for comparisons are the 7.7-pum and 12.5-pm E44 cells without
polymer. The threshold voltage of the E44 cells is ~0.9 Vems. From the measured total phase retardation, the
birefringence of E44 at A=1.55 pm is An~0.21 at 7~21 °C. On the other hand, the An of the PNLC cell was measured
to be An~0.19. The lower An originates from the imbedded 10% polymers. This result indicates that the polymer
networks do not disturb LC alignment noticeably. The threshold voltage of the 7.7-pum and 12.5-um PNLC cells is
increased to 20 and ~24 V., respectively. The increased threshold voltage implies that the LC molecules are tightly
anchored by the polymer networks. In Figs. 3 (a) and (b), the peak transmittance of the PNLC cells is similar to that
of the pure E44 cells. This indicates that the light scattering is negligible. We also measured the wavelength-
dependent transmittance of the 12.5 um cell. Scattering is strong in the visible region but becomes negligible at

A>1pum,
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Figure 3. Voltage-dependent reflectance (a) and transmittance (b) of E44 (gray lines) and PNLC (dark lines) cells.
The cell gap for the reflective and transmissive cells is 7.7 pmand 12.5 pm, respectively. A=1.55 um and 7=21 °C,

Figures 4(a) and (b) show the measured decay time (solid lines) of the reflective and transmissive PNLC cells. The
open circles are fittings with exponential phase decay: §(¢) =27 exp(-¢/7). Good agreement is found. The time

constant (at 1/e) for the 7.7-pm reflective cell and 12.5-um transmissive cell is =296 us and 755 ps, respectively. If
we count the phase decay time from 100—>10%, they are ~0.7 ms and 1.8 ms, respectively. As compared to the pure
E44 cell, the response time is improved by ~300X. The rise time (10> 90% phase change) was measured to be ~0.5
ms for the transmissive PNLC cell operating from 0 to 90 V..
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Figure 4. Measured phase decay time of the reflective (a) and transmissive (b) PNLC cells. Solid lines are
experimental data and open circles are fitting results. In (a), =296 us and in (b) 7=755 ps. 7=21°C and \=1.55 pm.

Figures 5 (a) and (b) show the simulation results of the pure E44 and PNLC cells. For the E44 cell, in Fig. 5 (a), the

following measured parameters are used: Ae=15.5, K,;=15.3 PN, and v,=0.448 Pas. The ratio of y/Ky is 29.33
ms/pm’. We assumed the pretilt angle is 2.5°. From fitting, we find K33=24.2 pN. For the PNLC cell, we assume the

Ag and v; of E44 do not change because the pure LC molecules are completely separated from the polymer. In the




PNLC cell, the measured y,/K,; drops to 0.094 ms/pn, indicating a much faster decay time. The expected effective

K1 of PNLC cell would be 4773 pN. From the fittings shown in Fig. 5 (b), we find K,,;=4800 pN and K33=50000 pN.

The simulation results imply that the strong anchoring force of polymer network in bulk LC area dramatically
increases the effective K value. The LC molecules in the polymer network domains become stiffer and more difficuit
to be reoriented by the electric field. A small portion of the bulk LC molecules near the boundaries of the network
domain may not rotate at all, which results a lower phase change in the high voltage regime.

Figure 6 shows the temperature dependent birefringence of the transmissive E44 PNLC cell at N=1.55 pm.

The dots represent the experimental data and solid lines are fittings with Haller’s equation An = An, (1~ T /T, " )ﬂ ;
where Ana is the birefringence at 7=0 and Bis a material parameter. From the fittings, we find Ano =0.255 and
5=0.187.
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Figure 5. The simulation results of E44 (2) and PNLC (b) cells. Solid lines are experimental data
and open circles are fitting results. 7=21°C and A=1.55 pm.
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Figure 6. Temperature-dependent birefringence of the E44 transmissive PNLC cell. d=12.58 ym.

To reduce the operating voltage, we cured the PNLC cell under a bias voltage Vy,. The 8-pum PNLC cells were
prepared at V=0, 0.9, 1.0, and 1.1 Vims, as shown in Figure 7. The high threshold voltage is reduced when V=0.9
Vims and eliminated when V > 1.0 Vs The tradeoff is that the response time is slightly increased. The bias voltage
needs to be optimized in order to maintain the maximum phase change and fast response time.
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Figure 7. Voltage-dependent reflectance PNLC cells cured with different bias voltage. The cell gap
for the reflective cells is 8 pm. A=1.55 pum and 7=21 °C,

To reduce the operating voltage while retaining the required 2m phase change, we could increase the LC
birefringence and dielectric anisotropy (Ae). Figure 8 shows the simulation results of the PNLC cell as An and A
increase. The V), could be reduced to 54.5 V if An is increased to 0.3, as shown in Fig. 8 (a). We could lower both
Viand V, by using a higher A material. The Vi is decreased gradually as Ag increases, as shown in Fig. 8 (b).

Our experimental data show that the response time of the PNLC cell is linearly proportional to the cell gap.
Thus, for practical applications a proper balance between operating voltage and response time needs to be taken into
consideration.

The developed PNLC can also be extended to the 3-5 and 8-12 pm spectral bands. In the long wavelength
region, the LC birefringence decreases but the light scattering becomes less significant. To obtain 27 phase change,
we need a thicker LC layer. The increased cell gap would lead to a higher voltage. To reduce voltage, we could
increase the domain size.
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Figure 8. The simulation results of PNLC cell with different An (a) and Ae (b). The fitting
parameters: K;=4800 pN, and K;;=50000 PN. A=1.55 pm.

We have demonstrated fast-response and scattering-free reflective and transmissive PNLC phase modulators. The
shortcoming is the increased voltage. To reduce operating voltage, high An and large Ae LC mixtures need to be
developed. The PNLC cell also holds promise for mid and long infrared applications.
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We shipped a high birefringence liquid crystal mixture to Dr. Terry Dorschner of Raytheon for testing his
laser beam steering. Telephone number: 978-684-8738.

We shipped a high birefringence liquid crystal mixture to Dr. Teresa Ewing of Boulder Nonlinear Systems,
for testing her mid-infrared dynamic scene projector. Telephone number: 303-604-0077.

We provided a high birefringence dual-frequency LC sample to Dr. Dong-Feng Gu of Rockwell Scientific
Company for testing his optical phased arrays. Email: dgu@rwsc.com.
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